Building Hybrid DApps using Blockchain Tactics -
The Meta-Transaction Example

Florian Blum, Benedikt Severin, Michael Hettmer, Philipp Hiickinghaus, Volker Gruhn
University of Duisburg-Essen
Schiitzenbahn 70, 45127, Essen, Germany
firstname.lastname @uni-due.de

Abstract—Building blockchain-based applications and deciding
which elements of an architecture should employ blockchain
technologies poses several challenges. Architectural design deci-
sions have a strong impact on quality attributes such as privacy,
operational cost, transparency, risk and user experience (UX).
To deal with these challenges, we propose a structured approach
using existing architectural concepts such as strategies, tactics
and design patterns and illustrate their application using the
Meta-Transaction design pattern. Meta-Transactions are cryp-
tographically signed function calls (i.e. transactions) a user
sends to a backend. The backend submits the transaction to
the blockchain and pays the fees on behalf of the user. Due
to the cryptographic signature, the backend is not able to
manipulate the function name or its parameters, thus acting as
a trustless proxy. Several other design patterns exist in the area
of blockchain-oriented applications but it remains unclear how
to decide which are suitable for a given use case and how quality
attributes of the resulting system are affected. By using the Meta-
Transaction design pattern as an example, this paper motivates
why Blockchain Tactics and corresponding design patterns are
necessary and help to structure best practices and common
solutions for challenges of using blockchain technology.

I. INTRODUCTION

Building applications using blockchain technology is a
promising way for decentralizing elements of a software
architecture in order to reduce the required level of trust
and increase transparency of current systems [1], [2], [3].
Blockchain-Oriented Software Engineering (BOSE) is a grow-
ing discipline for creating such decentralized applications
("DApps”) in a structured and effective way [4]. In addition to
the aforementioned advantages, using blockchain technology
also poses several challenges. The choice can have a strong
impact on quality attributes of the resulting system, e.g. pri-
vacy, operational cost, transparency, risk and user experience.
For many use cases it therefore makes sense to use blockchain
technology only for certain parts when building an application,
thus resulting in a "hybrid DApp” using blockchain and non-
blockchain elements [5]. The decision which parts benefit from
decentralization and which trade-offs have to be considered
is not easy to make. There are certain types of information
that need to be captured during requirements engineering in
order to make that decision but are not considered in detail by
current approaches (e.g. the level of trust or required level of
privacy). A first step towards this goal are the approaches by

Wessling et al. [S] or Marchesi et al. [6], who both present a
software engineering process tailored to the specific needs of
blockchain-oriented applications. Following a BOSE process,
the software architect is constantly confronted with trade-offs
due to challenges introduced by blockchain technology [4].
Those challenges can be categorized and refer to quality
attributes such as user experience (e.g., requiring a wallet with
cryptocurrency), privacy (e.g., storing personal information on
a public ledger) and scalability (e.g., waiting for a transaction
to be confirmed and added to the blockchain after each DApp
interaction) [7], [8]. To handle those challenges, Blockchain
Tactics and corresponding design patterns emerged to capture
best practices and common solutions in a structured way [2].
In this paper we take a closer look at current Blockchain
Tactics, describe the terminology around this area of research
and use Meta-Transactions to give a first specific example
of a design pattern implementing Blockchain Tactics. This
paper is structured as follows. Section II gives an overview of
current Blockchain Tactics and design patterns. In Section III
we will introduce the concept of Meta-Transactions to explain
the decision process when comparing different implementation
options and their trade-offs. Section IV concludes this paper
and gives an outlook on future work and open issues in
this direction. For illustration purposes this paper refers to
the Ethereum blockchain, as it is currently the most active
environment [9], [10], although most of the concepts are
independent from a specific blockchain implementation.

II. BLOCKCHAIN TACTICS

Architectural Tactics are introduced by Bass et al. [11] and
Bachmann et al. [12] in the context of software architecture
design and describe the relation between architectural deci-
sions and quality attributes. Bass and Bachmann use three
distinct terms to describe reoccurring challenges in the area of
software architectures: Strategies, Tactics and Design Patterns.
According to the authors, an Architectural Strategy describes
an overall goal of the stakeholders (e.g., “reduce cost”) and can
be represented as a set of Architectural Tactics. Architectural
Tactics follow the overall goal described by a strategy (e.g.,
"use cloud hosting” in order to reduce cost) and can also refer
to more specific Tactics (as a refinement of a tactic) and design
patterns (as an implementation of a tactic). A design pattern
captures best practices and common solutions for reoccurring

Strategies S: increase S: reduce required S: reduce
transparency level of trust centrality
4 / '
S~] 1
- T = \
Tactics T: use blockchain T: use distributed
technology database
AN
T: wallet placement T accommodate UX T accolmg](:date T: accommodate
scalability privacy
T: off- chaln T: conceal T: off-chain
storage information computation
AY X AN 7
Design Patterns\ / \ / \ N /
DP: Meta DP: State DP: Zero-
DP: IPFS DP: Swarrn DP: Sidechains Knowledge-
Transactions Channels Proofs

Fig. 1.

challenges in a structured way (e.g. ’use containers” as a more
specific implementation of the tactic “use cloud hosting”).
Blockchain Tactics by Wessling et al. adapt the idea of ar-
chitectural tactics to systems using blockchain technology [2],
as this decision introduces several challenges and can nega-
tively influence quality attributes of the resulting system. The
authors describe the general structure of a Blockchain Tactic
which consists of a stimulus (e.g., the desire to reduce the
centrality of a system), the response (e.g., a system with lower
centrality) and a set of best practices to guide the execution of
those desires on both architectural and implementation level.
This paper extends their work on Blockchain Tactics and
examines the relation between Strategies, Tactics and Design
Patterns in more detail. Figure 1 shows a few examples
of Strategies, Tactics and Design Patterns in the context of
blockchain-oriented applications that are currently emerging.
Although this paper focuses on blockchain tactics, the structure
of the figure is not restricted to blockchain technology as the
strategy “reduce centrality” could also be achieved with the
tactic "use distributed database”. The figure also highlights the
relation between those elements, e.g. what a possible stimulus
is for each tactic, which sub-tactics exist, which design pat-
terns support the implementation of a certain tactic, etc. The
relations should highlight the implications between strategies,
tactics and design patterns, as there is usually the need to
balance overarching strategies with the result of certain tactic
and design pattern choices. For example, in order to support
the strategy “increase transparency” of the system, the “use
blockchain technology” tactic is applied and therefore it is
necessary to consider the impact on privacy. Here the stimulus
of the sub-tactic “accommodate privacy” may refer to the
challenge of storing personal data on a public blockchain.
Sub-tactics like off-chain storage” [13] with specific design
patterns such as "IPES”! and “Swarm™ exist and help to

!https://ipfs.io
Zhttps://ethersphere. github.io/swarm-home/

Examples and relations of Strategies, Tactics and Design Patterns

satisfy the privacy requirements while balancing the trade-
offs. Literature regarding architectural tactics usually have an
overlap between the terms strategy, tactic and design pattern. It
is often hard to distinguish between tactics and design pattern,
e.g. “microservices” can be seen as a tactic to decompose a
business process but also a design pattern on how to implement
fine-grained functional offerings. In general it can be stated
that strategies are closer to the overall goals of the stakeholder
and are therefore positioned on top of the figure. At the bottom
of the figure, decisions are closer to the architectural level
and often refer to technical components and details regarding
the implementation. In our terminology, a strategy guides
the engineering of a blockchain application while balancing
quality attribute trade-offs. Tactics support the execution of
strategies, are usually motivated by challenges imposed by
using blockchain technology and focus on a single quality
attribute. Design patterns help to implement tactics and should
have a positive influence on quality attributes. In order to
find the best combination of tactics for a given use case
and stakeholder priorities, trade-off analysis methods such as
ATAM [14] can be used.

ITI. META-TRANSACTION DESIGN PATTERN

This section gives an overview of the Meta-Transaction
design pattern. To illustrate the decisions and trade-offs, we
use an example from a research project that uses blockchain
technology to support subcontracting and payment handling
for the building industry. In our use case, construction workers
confirm a task on their mobile device, trigger a review process
and then receive a partial payment for their current progress.

Blockchain technology can introduce a potential barrier for
users to interact with the application. Wessling et al. [8] men-
tion two opposing interaction types with different implications
regarding the user’s trust and necessary technological skill.
On the one hand, users can create, sign and send transactions
themselves, which requires no trust towards the backend but
high technological skill. On the other hand, users trust the

backend completely and have it create, sign and send trans-
actions on behalf of them, which requires no understanding
of blockchain technology and results in high convenience
and therefore an improved user experience. Interacting with
a DApp usually requires a wallet with cryptocurrency in order
to pay for transaction fees. This circumstance is the stimulus
for the blockchain tactic "accommodate UX” which can be
implemented based on the Meta-Transactions design pattern
that is currently emerging. Meta-Transactions offer a trade-off
between those opposing interaction types. It enables users to
sign transactions on their device, having the backend submit
it to the blockchain and pay for the transaction cost. The
concept of Meta-Transactions is used in projects such as Status
(IdentityGasRelay®), OpenZeppelin (ECDSA library*), uPort
(proxy contract®), for the UniversalLogin® design pattern as
well as the BouncerProxy’ and MetaTx.io® by Austin Griffith.
Those projects use Meta-Transaction to solve a common
DApp problem: Submitting a blockchain transaction requires
a transaction fee for which the users need cryptocurrencies.
This is especially relevant for onboarding new users who
are not familiar with blockchain technology. Currently, there
are several concepts the user has to understand in order to
interact with a DApp. Those concepts cover cryptography, the
public-private keypair of a wallet, obtaining a cryptocurrency,
understanding transaction fees (“gas costs” on the Ethereum
blockchain), using tools such as the MetaMask browser plugin
to interact with DApps, which browsers with built-in wallet
functionality exist, etc. Meta-Transactions help lowering the
onboarding barrier for users who are new to DApps by having
the provider pay for transaction cost. This hides technical
complexity but enables expert users to interact with the DApp
independently as both forwarded Meta-Transactions and direct
smart-contract interactions can be supported simultaneously.

The DApp provider has to decide for which interactions
Meta-Transactions will be used. They can be used for all
user interactions (which might increase cost due to additional
smart-contract complexity) or to simplify the onboarding pro-
cess. The design pattern also contributes to risk management
for the operational phase. Paying transaction cost is also pos-
sible by sending cryptocurrency to the user’s wallet upfront.
However, leaving funds on multiple devices can increase risk
and is hard to manage (cf. Figure 1: "wallet placement” tactic).

Figure 2 illustrates the three different options and which
implications each has on UX, transparency and risk.

Option (A): Users are allowed to confirm tasks by calling
a function on the backend (e.g. via REST API). The backend
has a wallet with cryptocurrency funds, is able to send the
confirmation to the blockchain and pays transaction fees. This
option has an improved UX (no barrier for the user and details

3https://github.convstatus-im/contracts/

“*https://github.com/OpenZeppelin/openze ppelin-solidity/blob/master/
contracts/cryptography/ECDSA.sol

Shttps:/github.com/uport-project/uport-identity/

Shttps://github.com/UniversalLogin/UniversalLoginSDK

7https://github.com/austintgriffith/bouncer-proxy

Shttps:/metatx.io

(A) Backend saves
to Blockchain

)

(B) Meta Transaction

&
@,,,@ R Ca
Mo

Fig. 2. Different options for implementing the use case

(C) User saves
to Blockchain

s

Y

of blockchain technology are hidden), low transparency (users
cannot be sure the task ID will not be changed and the backend
signs as the origin of this information) and low risk for the
operator (only a single wallet under its control).

Option (B): With the Meta-Transaction design pattern
users are not required to have a wallet with cryptocurrency
but are still able to create task confirmations and sign them
with their private key. The backend checks the validity of the
Meta-Transaction and sends it to the blockchain by paying
transaction fees with a local wallet. This option offers an
improved UX (users do not need cryptocurrency funds in
their wallet), high transparency (Meta-Transactions cannot be
manipulated and refer to the user as the true origin) and low
risk for the operator (having only a single wallet to manage).

Option (C): Users can also send transactions directly
to the blockchain. This option has a bad UX (users have
to pay transaction fees by themselves and are required to
have cryptocurrency funds), offers high transparency (users are
visible as the origin) and high risk (users have to manage and
secure their own cryptocurrency funds that are out of reach for
the operator, distributed on many devices and hard to manage).

Option A and Option B allows the backend to refuse sending
a transaction to the blockchain. Although a signed Meta-
Transaction cannot be manipulated, the transaction can still be
omitted in Option B. If that is an advantage or disadvantage
depends on the point of view. For the DApp operator it is
useful to prevent the submission of a transaction coming
from a compromised device (e.g. in case it was stolen or
is defect). This helps to prevent writing wrong information
to the blockchain and reduces risk. For the user it might be
a disadvantage as the backend operator is able to prevent a
transaction from being sent to the blockchain. Nonetheless,
this evaluation depends highly on the use case.

Figure 3 shows the interaction between user, backend
and blockchain using Meta-Transactions. In our example,
a user wants to confirm a task by calling the function
confirmTask (Task-ID) on the smart contract of the
DApp. Instead of sending a transaction directly to the
blockchain, users sign the desired function call with their
private key. This can be done in a web or mobile application
by using the MetaMask® browser plugin, using a browser

?https:/metamask.io

SignMetaTx: i
I' “confirmTask('ID123")"

SendMetaTx: Signed-TX ‘)CheckValidity: Signed-TX

SendTx: Signed-TX

CheckValidity: Signed-TX
Call: confirmTask('ID123")

D' TX-Hash

U TX-Hash |

Fig. 3. Interaction sequence using Meta-Transactions

with built-in cryptocurrency wallet'” or using a temporary
wallet created in the background!'. The user sends a signed
transaction to the backend where its validity is checked and
then sent to the blockchain by paying the transaction fee.
Before sending it to the blockchain a first validity check
can be done in order to prevent paying fees for invalid
transactions. The function’s name and input values are signed
and therefore cannot be changed by the backend. The signature
will also be checked on-chain within the smart contract before
calling confirmTask (ID123”). Afterwards the backend
receives the hash from the successful transaction and can
return it to the user as a confirmation receipt. For a user there
are two outcomes that both can be checked independently from
and without trusting the backend provider: Either their transac-
tion was added to the blockchain as intended (confirmed with
the transaction hash) or not submitted at all. It is not possible
to submit a manipulated transaction on behalf of the user.

1 function forward(bytes sig, address signer, address
destination, uint value, bytes data) public {

require (signer == getSigner (_metaTxHash, siqg));

assembly {
call (gas, destination, value, add(data,
mload(data), 0, 0)

0x20),

}

Vool AW

10 function getSigner (bytes32 _hash, bytes _signature)
internal view returns (address) {

12 return ecrecover (keccak256 (

13 abi.encodePacked ("\x19Ethereum Signed Message:\
n32", _hash)

14), v, T, S);

15 }

Fig. 4. Solidity functions to check and forward a Meta-Transaction

The on-chain validity check of the Meta-Transaction is done
with the Solidity function ecrecover (). Figure 4 shows the
relevant parts of a smart contract that handles the validation.
The function forward() in line 1 receives the signed
transaction data from the user as parameter sig and is checked
for validity in line 3. Here the function getSigner () from

1%¢.g. https://brave.com or https://www.opera.com/crypto
!le g. implemented as https://github.com/austintgriffith/burner-wallet

line 10 is called which uses the ecrecover () function to
derive the origin (i.e., public address) of the given signature.
The recovered origin has to match the user’s address to confirm
that the transaction is valid and has not been manipulated.

It needs to be considered that adding validity checks for
Meta-Transactions within smart contracts results in higher
complexity and increases transaction cost. To achieve the best
trade-off between UX, transparency, risk and operational costs
for the provider, the decision which function calls require this
design pattern should be made carefully.

IV. CoNCLUSION AND FUTURE WORK

This paper discusses challenges of Blockchain-Oriented
Software Engineering and motivates the need for Blockchain
Tactics. Figure 1 gives a first impression of the relations
between Strategies, Tactics and Design Patterns. The Meta-
Transaction design pattern is used to explain that certain trade-
offs regarding quality attributes of the resulting system have
to be considered when comparing different implementation
options for a specific scenario. In our scenario the use of
Meta-Transactions served as the best trade-off between UX,
transparency and risk but of course this conclusion is highly
context-dependent. The frequency and complexity of function
calls for a scenario have to be considered as using the Meta-
Transaction design pattern has a strong impact on the resulting
cost. We used a simple example and more complex scenarios
and other design patterns need to be discussed in the future.

Current research regarding smart contract design patterns is
at an early stage [15], [16]. Several best practices emerged as a
general guideline when developing smart contracts [17], [18],
but currently there are no guidelines for selecting those design
patterns and examining which ones are suitable for a given use
case. Approaches in the area of Blockchain-Oriented Software
Engineering are currently emerging. Wessling et al. [5] and
Marchesi et al. [6] both present a high-level process for build-
ing decentralized applications and explain which information
are necessary to make well-founded architectural decisions.
Nonetheless, both approaches are not specific enough to
support design decisions on the architectural as well as the
implementation level.

This paper serves as a first step towards such guidelines
by identifying possible Strategies, Tactics and Design Patterns
in the context of blockchain applications as a foundation
for a coherent decision process. We motivated that using
blockchain technology has a strong impact on quality attributes
such as UX, transparency and risk and that further trade-off
analysis (e.g. using ATAM [14]) is necessary to find the best
combination of Tactics and Design Patterns for a use case.

REFERENCES

[1] X. Xu, I. Weber, and M. Staples, Architecture for Blockchain
Applications. Springer International Publishing. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-03035-3

[2] F. Wessling, C. Ehmke, O. Meyer, and V. Gruhn, “Towards blockchain
tactics: Building hybrid decentralized software architectures,” in 2079
IEEE International Conference on Software Architecture Companion
(ICSA-C), Hamburg, Germany, March 25-29, 2019, 2019.

[3]

[4]

[5]

[6]

[7]

[8]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

C. Ehmke, F. Blum, and V. Gruhn, “Properties of decentralized
consensus technology — why not every blockchain is a blockchain,”
2019. [Online]. Available: http://arxiv.org/abs/1907.09289

S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: Challenges and new directions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), 2017, pp. 169-171.

F. Wessling, C. Ehmke, M. Hesenius, and V. Gruhn, “How much
blockchain do you need? towards a concept for building hybrid dapp
architectures,” in Ist IEEE/ACM International Workshop on Emerging
Trends in Software Engineering for Blockchain, WETSEB@ICSE 2018,
Gothenburg, Sweden, May 27 - June 3, 2018, 2018, pp. 44-47.

M. Marchesi, L. Marchesi, and R. Tonelli, “An agile software
engineering method to design blockchain applications,” 2018. [Online].
Available: http://arxiv.org/abs/1809.09596

X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and
P. Rimba, “A taxonomy of blockchain-based systems for architecture de-
sign,” in 2017 IEEE International Conference on Software Architecture.
F. Wessling and V. Gruhn, “Engineering software architectures of
blockchain-oriented applications,” in 2018 IEEE International Confer-
ence on Software Architecture Companion, ICSA Companion 2018,
Seattle, WA, USA, April 30 - May 4, 2018, 2018, pp. 45-46.

V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” 2013. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper

A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and DApps, 1st ed. O’Reilly Media, 2018.

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ser. SEI series in software engineering. Addison-Wesley, 2003.

F. Bachmann, L. Bass, and M. Klein, “Deriving architectural tactics:
A step toward methodical architectural design,” Software Engineering
Institute (SEI), Technical Report, No. CMU/SEI-2003-TR-004, 2003.

J. Eberhardt and S. Tai, “On or off the blockchain? insights on off-
chaining computation and data,” in Service-Oriented and Cloud Com-
puting, ser. Lecture Notes in Computer Science. Springer, Cham, 2017.
R. Kazman, M. Klein, and P. Clements, “ATAM: Method for architecture
evaluation,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU/SEI-2000-TR-004, 2000.

Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, “Applying design patterns
in smart contracts,” in Blockchain ICBC 2018, ser. Lecture Notes in
Computer Science, S. Chen, H. Wang, and L.-J. Zhang, Eds. Springer
International Publishing, 2018, pp. 92-106.

M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), 2018, pp. 2-8.
Ethereum. Solidity docs - common patterns. [Online]. Available:
https://solidity.readthedocs.io/en/develop/common- patterns.html
ConsenSys. Ethereum smart contract security best practices. [Online].
Available: https://consensys.github.io/smart-contract-best-practices/

