Towards Blockchain Tactics: Building Hybrid
Decentralized Software Architectures

Florian Wessling, Christopher Ehmke, Ole Meyer, Volker Gruhn
University of Duisburg-Essen, Germany
Schuetzenbahn 70, 45127, Essen, Germany
firstname.lastname @uni-due.de

Abstract—Blockchain-based applications usually consist of cen-
tralized elements (e.g., web servers and back-end logic) connected
to decentralized elements such as smart contracts. The engineer-
ing of such hybrid software architectures poses a challenge as it
is unclear which elements should be centralized or decentralized.
Furthermore the impact of this decision (or the balance between
those two areas) on software quality attributes such as security,
maintainability, performance or costs is currently unknown. The
goal is to build a software architecture using the benefits and
handling the challenges of blockchain technology while fulfilling
the relevant quality attributes. While there are several approaches
examining the relation between architectural decisions and qual-
ity attributes in centralized systems, research is at an early stage
for decentralized elements in software architectures. This paper
presents a first step towards architectural blockchain tactics.
With a simplified experiment comparing two implementation
variants of an Ethereum smart contract we show that software
design patterns are not always beneficial and that the expected
usage scenarios have a strong impact on the operational costs.
We argue that further research and validation is necessary
for gaining more qualitative and quantitative insights to make
informed architectural design decisions when using blockchain
technology and give a first outline on how to achieve this.

I. INTRODUCTION

In the last few years blockchain technology emerged as
a new trend to build applications based on decentralized
components [1]. Similar to common information systems the
main focus is on saving and retrieving data, but following
the goal to decrease the central role of, e.g., a server by
implementing the information processing and storage based
on decentralized components. When using blockchain tech-
nology, data is stored redundantly in several locations in a
data structure known as distributed ledger. Changes to the
distributed ledger are executed in the form of transactions
and kept consistent between all network participants using a
consensus algorithm. Instead of trusting a central component
for these systems, the trust is put in a peer-to-peer protocol
based on cryptographic primitives which is kept running by a
game theoretical incentive scheme. Blockchain is a so-called
Distributed Ledger Technology (DLT), well-known for projects
such as Bitcoin [2] as a cryptocurrency and Ethereum for
implementing decentralized applications [3], [4], [5].

Building blockchain-based applications enables the creation
of software that is executed in a decentralized, trustless, trans-
parent and tamper-proof environment [5] (thus often called
DApps: decentralized applications). However, those advan-
tages do not come for free. DApps, e.g., built on Ethereum,

are deployed on the blockchain as Smart Contracts (SC). Each
interaction with an application is done through a function call
on a SC that is sent as a transaction to the blockchain network.
To have a transaction executed, a certain amount of “gas”
(measured in Ether as the currency of Ethereum) has to be
paid. The concept of gas and the requirement to specify a gas
consumption limit per transaction is used to prevent denial-of-
service attacks and to ensure even code with an infinite loop is
stopped deterministically after a certain amount of steps [3].
These costs consist of a fixed gas amount per transaction and
a variable amount of gas for the execution [4]. Execution
costs depend on the complexity of the function that is called
and is determined based on the computational instructions the
code requires, its data structures, write-access to variables, the
control flow of the SCs, etc.

Designing hybrid software architectures using blockchain
technology requires a deliberate balance between centralized
and decentralized elements [6]. There is a lot of interest
for adding blockchain technology to an existing system or
replacing existing modules with a decentralized counterpart.
Nonetheless, changing an existing system is a challenging task.
While blockchain technology is an opportunity for introducing
decentralized elements, it is still a new concept and currently
there is little common knowledge about the impact design
decisions in this space have on software quality attributes
such as security, maintainability, performance or costs. We
therefore argue that a new blockchain-oriented view is required
for the architectural design process and propose the idea of
blockchain tactics. When it is intended to reduce the centrality
of an existing system, to lower the required trust for using
certain components or to add blockchain technology to a
system, architectural blockchain tactics serve as a guideline.
The goal is to collect approaches and best practices providing
a structured way for changing a system, e.g., deciding which
elements should be decentralized in order to benefit from
using blockchain technology and at the same time handle
its challenges. In this paper we propose a first version of
blockchain tactics to consider the architectural design and im-
plementation level when introducing decentralized elements.
With a simplified experiment we give a first hint on the impact
implementation decisions (e.g. use of design patterns) and the
expected usage scenario (i.e., the frequency certain functions
are going to be executed) can have on transaction costs and
therefore the operational costs of the whole application.

The paper is structured as follows. In Section II we briefly
discuss related approaches for designing and implementing
blockchain-based software architectures. Section III explains
the proposed blockchain tactics as the main contribution of
this paper. Section IV presents a simplified experiment to show
the impact of implementation decisions on transaction costs.
In Section V we conclude our paper and discuss future work.

II. RELATED WORK
A. Architectural Design

Xu et al. [7] present a taxonomy of blockchain proper-
ties and a flowchart with multiple questions. Together both
elements help to decide which blockchain configuration is
suitable for a given use case by discussing aspects like
authority, storage and decentralization. Their approach refers
to infrastructure and protocol options such as consensus al-
gorithm and block size but gives no hint for the software
architecture level. Wessling et al. [6] motivate why a more
fine-grained approach is necessary when deciding for which
elements it makes sense to be replaced or extended with
blockchain technology. Their approach takes participants, their
trust relations and interactions into consideration to derive an
architectural draft. The resulting hybrid architecture represents
a balance between centralized and decentralized elements.
The authors discuss the possible impact architectural decisions
have on quality attributes such as transaction costs but without
further validation. Rimba et al. [8] compare a business process
in two execution environments: On the Amazon Simple Work-
flow Service cloud platform and on the Ethereum blockchain
deployed as smart contract. Their results show costs two orders
of magnitude higher for the blockchain variant than for the
cloud platform. One drawback is that the architectures used
in the example is either fully centralized or decentralized.
There is no consideration of a hybrid architecture as a possible
solution to lower costs.

B. Implementation

Design patterns are best practices for the implementation
level represented as reusable code structures to solve reoccur-
ring problems (cf. the "Gang of Four” or "GoF” patterns [9]).
Using design patterns is a convenient way to increase code
readability, lower redundancy and improve maintainability. In
the context of blockchain-oriented software engineering [5]
different motivations arise to use design patterns in SCs.
Luu et al. show that a lot of different SCs suffer from the same
types of issues and present a solution that relies on specific
design patterns and best practices regarding security when cre-
ating SCs [10]. Zhang et al. illustrate the use of the GoF design
patterns Abstract Factory, Flyweight and Proxy for implement-
ing a health use case [11]. Furthermore, the authors highlight
how the Publish-Subscribe pattern can support the application
on an architectural level. Eberhardt and Tai [12] discuss off-
chaining patterns as a means to reduce operational costs while
maintaining the trustlessness of the implementation. Garcia-
Banuelos et al. [13] examine the operational costs of multiple
implementation variants of a business process. The authors use

a business model described in BPMN (Business Process Model
and Notation) and have Solidity code for an Ethereum smart
contract generated. From this code two optimized variants are
created. In one variant a new smart contract is deployed for
each instance of the business process and for the other variant
all instances are handled within a single smart contract. For the
resulting implementation variants quality attributes such as gas
costs (i.e., transaction costs) on the implementation level and
throughput on the network architectural level are compared.
Different random traces from the business process model are
simulated and therefore represent multiple usage scenarios
(e.g. invoicing with many process instances or a supply chain
with many events during a single process instance). Using a
single contract for all process instances results for example
in the least gas costs. Best practices expressed by design
patterns help to avoid security pitfalls, prevent vulnerabilities
in SCs (cf. [14]) and help to deal with certain properties of
blockchains. However, design patterns can also have a negative
impact on resource usage. There are several studies examining
the impact of design patterns on energy consumption, which is
especially relevant when developing mobile applications [15].
Energy consumption is hard to capture because it requires
specialized tools, e.g., to measure battery current during the
execution of an application. Blockchain transactions have the
advantage that the executed functions are deterministic by de-
sign. This allows for a predictable calculation of the gas being
used and a very easy comparison of different implementations.

III. ARCHITECTURAL BLOCKCHAIN TACTICS

The idea to introduce architectural blockchain tactics is
inspired by the work of Bass et al. [16] and Bachmann
et al. [17] as an established way to describe the relation
between architectural decisions and quality attributes. Their
goal is to model how quality attributes are impacted by
architectural decisions in order to control their outcome with
suitable responses. Architectural tactics usually describe a
given stimulus, multiple tactics to handle this stimulus and
a response that should be achieved.

Our idea of architectural blockchain tactics is shown in
Figure 1. The stimulus is in this case the intention to re-
duce the centrality of a system component or to reduce the
required trust for interacting with a system. The envisioned
blockchain tactics are separated in two aspects. The first aspect
is the architectural design level for which we incorporate
the approach by Wessling et al. [6]. The authors describe
a process for deriving an architectural draft considering the
participants of a system (users and existing systems), their
trust relations and interactions. Their overall goal is to derive
a hybrid architectural design which deals with blockchain
properties, balances centralized and decentralized elements
and thus minimizes the operational costs. The second aspect
is the implementation level which is part of this paper and
will be discussed in Section IV. For this aspect we propose
to determine usage scenarios (’concrete scenarios” according
to Bass et al. [16]) that are used to simulate operational costs
for different smart contract implementations.

Intention to
reduce required

-

Blockchain Tactics

Derive Architectural Design —» Create Implementation

~a

trust and centrality

»-| | . Examine Participants
- Examine Trust Relations

- Examine Interactions
Wessling et al. [6]

- Select Design Patterns

Determine Usage Scenarios >

Simulate Operational Costs Extending or reP'aC‘”g
elements with

Blockchain technology

Fig. 1. Architectural Blockchain Tactics

The costs for using blockchain technology in an application
appears to be a very important quality attribute (see. [8],
[13]). In addition to the operational costs that we consider
in this paper, there are several other facets of costs that
can be identified, e.g., costs for engineering (development,
deployment), maintenance (update, migration), etc.

In the next section we will focus on the implementation level
and show that even the choice of design patterns can have a
strong impact on transaction costs for an application. If there
is already a noticeable impact on the implementation level, we
argue that there must be an even bigger impact for architectural
decisions on a broader level (e.g., defining modules or deciding
which elements should be centralized or decentralized).

IV. EXPERIMENT

The goal of our experiment is to compare transaction costs
of two smart contract implementations by simulating three
different usage scenarios. We want to show the impact of
implementation decisions (e.g., design patterns) on transaction
costs. For the simulation we use the Ethereum blockchain
where the total costs for a transaction consist of a fixed
amount of gas per transaction and the variable execution costs,
depending on the complexity of the called function. The simple
SC used in this experiment allows to calculate the average
of a set of numbers. The contracts are written in Solidity’
and executed in the Remix Solidity IDE2. Two implementation
variants were created to compare the costs with and without
using a design pattern.

1 contract AvgOnDemand {

2 int256 sum;

3 int256 count;

4

5 function add(int256 n) public {
6 sum += n;

7 count++;

8 }

9

10 function calc() public returns (int256) {
11 return sum / count;

12 }

13}

Fig. 2. Smart contract with separate functions: Calculate average on demand

!'Solidity v0.4.20, see https://solidity.readthedocs.io, visited on 2018-11-13
Zhttps://remix.ethereum.org, visited on 2018-11-13

The variant without a design pattern is shown in Figure 2
and consists of two separate functions. To add a number to the
overall sum, the function add() is used. Here the additional
value n is saved and the counter is incremented. To gather the
latest average value, the method calc() executes the calculation
on demand and is called in a separate transaction.

UpdatedAvg (avg) ;

1 contract AvgObserver {

2 int256 sum;

3 int256 count;

4 int256 avg;

5

6 event UpdatedAvg (int256 wvalue);
7

8 function addCalc (int256 n) public {
9 sum += n;

10 count++;

11 avg = sum / count;

12

13

14

Fig. 3. Smart contract implementing the observer pattern using a combined
function: Add number, calculate average and send event to notify observers

The variant in Figure 3 implements the observer pattern and
combines both tasks in one function addCalc(). The parameter
n is added to the sum, the counter is incremented and a new
average value is calculated and written to the variable avg.

Table I shows that the fixed gas amount per transaction is

TABLE I
TRANSACTION COSTS OF SMART CONTRACT FUNCTIONS FOR BOTH
VARIANTS
Variant Function | Gaspized | GaSEzecution
add() 21464 10656
On Demand |— 22707 21272 625
Observer addCalc() 21464 17343

almost equal for all functions but that huge differences are
visible for the execution costs. As a next step we have to
consider the usage scenarios and compare the total transaction
costs for both implementation variants. Table II shows the
three fictional scenarios for this experiment. In Scenario A the
task of adding a number is executed very often and calculating
the average is executed less frequently. For scenario B both
amounts are equal and for scenario C the amounts are the
opposite of scenario A.

lel2 lel2

lel2

Calculate on demand 5 Calculate on demand 2.5 Calculate on demand P
«w 31 —— Observer Pattern " —— Observer Pattern » —— Observer Pattern p
© © 4 © 2.0 ,
O V)]
2, 23 215 7
© kS © ~
=} =) 3 /
g £2 gLo e
51 =1 S _
(@] (] 1 005 S
0 0 0.0 B
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Simulation Iteration (Step)

(a) Scenario A: Frequently adding numbers and
infrequently calculating average

Simulation Iteration (Step)

(b) Scenario B: Similar frequency adding num-
bers and calculating average

Simulation Iteration (Step)

(c) Scenario C: Infrequently adding numbers and
frequently calculating average

Fig. 4. Results of gas consumption for each scenario and both implementation variants

TABLE I
USAGE SCENARIOS AND AMOUNT OF FUNCTION CALLS

Adding Number | Calculate Average
Scenario A 1k — 2000k 10 — 200k
Scenario B 10 — 2000k
Scenario C 10 — 200k \ 1k — 2000k

The results of the experiment are shown in Figure 4. For
each simulation step (x-axis) a new pair of random numbers
is selected from both ranges given in Table II that represents
the amount of repetitions for each task and is used for both
implementation variants. The y-axis represents the cumulative
transaction costs. The results of simulating scenario A (see
Figure 4a) show that over time the calculation on demand
results in less transaction costs than the observer pattern, as
adding numbers is more frequent than calculating the average.
For roughly equal amounts of adding numbers and calculating
the average, the observer patterns turns out to be the better
choice (see Figure 4b). Although the execution costs for the
observer pattern is higher than for calculating on demand (see
Table I), the latter requires two separate function calls and
therefore two transactions with twice the fixed gas amount.
Scenario C benefits from the observer pattern (see Figure 4c)
as the average calculation is called very often and free of cost.

V. CONCLUSION AND FUTURE WORK

In this paper we explained the need for architectural
blockchain tactics as a means to support the process of inte-
grating decentralized elements in a software architecture and
present a first version of its structure. We argue that decisions
on both the architectural and implementation level have to
be justified with appropriate metrics for quantifying quality
attributes. We presented a simplified experiment to show the
impact of design patterns in smart contracts on transaction
costs. Research in the area of Blockchain-oriented Software
Engineering (BOSE) is at an early stage [5]. Architectural
blockchain tactics serve as a first step towards a coherent
and fine-grained approach for employing distributed ledger
technology and building hybrid architectures with the right
balance between centralized and decentralized elements.

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Swan, Blockchain: Blueprint for a New Economy. O’Reilly, 2015.
A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-
Currencies, 1st ed. O’Reilly Media, Inc., 2014.

V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” 2013, visited on 2018-11-13.
[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper
G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” visited on 2018-11-13. [Online]. Available: http://gavwood.
com/paper.pdf

S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: Challenges and new directions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), 2017, pp. 169-171.

F. Wessling, C. Ehmke, M. Hesenius, and V. Gruhn, “How much
blockchain do you need? towards a concept for building hybrid DApp
architectures,” in IEEE/ACM st International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), 40th Inter-
national Conference on Software Engineering ICSE 2018. ACM, 2018.
X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and
P. Rimba, “A taxonomy of blockchain-based systems for architecture
design,” in IEEE International Conference on Software Architecture
(ICSA), 2017, pp. 243-252.

P. Rimba, A. B. Tran, I. Weber, M. Staples, A. Ponomarev, and
X. Xu, “Comparing blockchain and cloud services for business process
execution.” IEEE, 2017, pp. 257-260.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS 16. New York,
NY, USA: ACM, 2016, pp. 254-269.

P. Zhang, J. White, D. C. Schmidt, and G. Lenz, “Design of blockchain-
based apps using familiar software patterns to address interoperability
challenges in healthcare,” in PLoP - 24th Conference On Pattern
Languages Of Programs, 2017.

J. Eberhardt and S. Tai, “On or off the blockchain? insights on off-
chaining computation and data,” in Service-Oriented and Cloud Com-
puting, F. De Paoli, S. Schulte, and E. Broch Johnsen, Eds. ~Cham:
Springer International Publishing, 2017, pp. 3-15.

L. Garca-Bauelos, A. Ponomarev, M. Dumas, and I. Weber, “Optimized
execution of business processes on blockchain,” in Business Process
Management, ser. Lecture Notes in Computer Science. Springer, 2017.
ConsenSys. Ethereum smart contract security best practices. [Online].
Available: https://consensys.github.io/smart-contract-best-practices/

A. Noureddine and A. Rajan, “Optimising energy consumption of
design patterns,” in Proceedings of the 37th International Conference
on Software Engineering (ICSE) - Volume 2. 1EEE Press, pp. 623-626.
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ser. SEI series in software engineering. Addison-Wesley, 2003.

F. Bachmann, L. Bass, and M. Klein, “Deriving architectural tactics:
A step toward methodical architectural design,” Software Engineering
Institute (SEI), Technical Report, No. CMU/SEI-2003-TR-004, 2003.

