How Much Blockchain Do You Need?
Towards a Concept for Building Hybrid DApp Architectures

Florian Wessling, Christopher Ehmke, Marc Hesenius, Volker Gruhn
paluno, University of Duisburg-Essen
Essen, Germany
firstname.lastname@paluno.uni-due.de

ABSTRACT

Adding blockchain technology to existing systems instead of build-
ing them from the ground up poses several challenges. It is difficult
to find out which attributes of blockchains are important for a
given use case (e.g. immutable, trustless, anonymous) and to de-
cide which elements of an architecture should employ blockchain
technologies. Current approaches generally only give a hint on
whether blockchain technology makes sense for a given use case
or not. This paper proposes a more fine-grained approach to decide
which elements of an application architecture could benefit from
the use of blockchain technology. We illustrate the first outline of
our approach which identifies participants, their trust relations and
interactions to derive a hybrid architecture (i.e., an architecture
embedding blockchain technology in existing software systems or
creating new systems using blockchain only in certain parts).

KEYWORDS

blockchain, architecture, Executable Distributed Code Contracts,
EDCC, smart contract, decentralized application, DApp, design
pattern, architecture pattern, blockchain-oriented software engi-
neering, hybrid architectures

1 INTRODUCTION

Blockchain technologies bring certain properties to create a decen-
tralized, trustless, transparent and tamper-proof environment for
building applications [10]. Those advantages come at the cost of

additional technical complexity. When building blockchain-based
applications (so-called DApps: decentralized applications) the goal
is to benefit from the advantages and being able to handle the
imposed technical challenges of blockchains (cf. [8]).

Current approaches focus on the question whether a blockchain
is necessary for a given use case or not. Peck differentiates be-
tween three types of blockchain, that might be needed for an
use case: "no blockchain", "permissioned blockchain" or "public
blockchain" [6]. Wuest and Gervais add a fourth variant and distin-
guish between public and private permissioned blockchains [11].
This option is based on the question whether public verifiability is
required. Xu et al. [12] argue that blockchain technology has many
configurations and variants. To support the creation of blockchain-
based systems the authors propose a design process for selecting
and configuring the most suitable blockchain implementation. The
main contribution of their work is a taxonomy of blockchain prop-
erties and a flowchart. Those elements serve as a guidance and
initial questionnaire when designing a blockchain-based system by
reflecting on aspects like authority, storage and decentralization.
The result is very specific as it refers to the configuration of a single
blockchain system with respect to technical details such as block
creation time, block size, consensus algorithm, etc.

In this paper we focus on the architectural design for blockchain-
oriented applications and propose an approach to decide which
elements of an application architecture could benefit from the use of
blockchain technology. We illustrate the first outline of our idea to
derive a hybrid architectural draft by identifying participants, their
trust relations and interactions. In contrast to the aforementioned
approaches we propose a more fine-grained process. Instead of giv-
ing only a few general choices when deciding whether a blockchain
is useful for a use case or not, we want to go into more detail and
support developers in deciding which specific elements or areas of
an architecture can benefit from the use of blockchain technology.
This is especially relevant when applications are not built or rewrit-
ten from the ground up based on blockchain technology ("big-bang
integration” [9]) but rather are extended with blockchain aspects
for certain subsystems ("gradual integration” [9]). Those systems
represent a hybrid architecture featuring elements both with and
without blockchain technology (e.g. from existing software sys-
tems). This allows to benefit from blockchain properties in certain
parts of an application and to decide which blockchain type and
configuration fits best.

The paper is structured as follows: Section 2 explains our ap-
proach and its four steps in detail. In section 3 we conclude the
paper and summarize our findings. Our ongoing research is out-
lined in section 4 as well as an outlook on our future work regarding
architectural patterns and design patterns for code contracts.



2 APPROACH

The approach of this paper is based on the hypothesis that the
decision to use blockchain technology is not always useful to be
made for a software system as a whole. Instead the decision should
be considered for individual elements of a system. Our approach
consists of four steps, which are explained in more detail in the
next sections:

(1) Identify participants

(2) Identify trust relations between participants

(3) Identify interactions between participants

(4) Derive an architectural draft

(1) Identify Participants

Building Construction
Owner Supervisor

(&) o

Contractor Contractor Contractor
Figure 1: Identify participants

The first step is to identify the participants, i.e., peripheral sys-
tems or users, that interact with an application. To decide which
participants or other systems are relevant to an use case, determine
and consider the context boundary of the system (cf. [7]). In case
the distinction does not make a difference it is possible to aggregate
multiple participants (e.g. "Contractor X" and "Contractor Y") by
simply using types of participants (e.g. "Contractors").

For our example we examine the creation of a new system that
supports the coordination and payment of craftsmen constructing
a building. As we do not add blockchain technology to an existing
system, the selected participants focus on the people interacting
with the planned application instead of peripheral systems. Figure 1
shows five participants: Building owner "B" who is legally responsi-
ble for the construction site and pays contractors. The construction
supervisor "S" is responsible for coordinating the contractors "X",
"Y" and "Z". The contractors carry out the construction works.

(2) Identify Trust Relations

Trust is a central aspect of building blockchain-based applications.
Therefore identifying the trust relations among the participants of
an application is a key task. The notion of trust exists in order to re-
duce the complexity of our environment, according to Luhmann [4].
He states that we are surrounded by many complex systems which
must be considered when acting. The only way to reduce the com-
plexity of these systems to a degree that enables us to act is through
the concept of trust. Bierhoff and Vornefeld [2] point out that from
a historical perspective there is a distinction between two forms of
trust: relational trust, meaning the trust between different persons,
and generalized trust. The latter refers to trust in social structures

F. Wessling et al.

like the government or the trust that social conventions are gener-
ally followed. According to Bierhoff and Vornefeld, during the last
decades a new form of trust arose: the so-called trust in abstract
systems. This type of trust describes the problem that during the
last years the number of complex systems around us increased
significantly. For example many computer systems (like mobile
phones, cars or even electronic door locks) began to interact with
our daily life. These devices and systems are too complex to be
checked for correctness by the common user. According to Bierhoff
and Vornefeld people solved this problem by simply trusting that
these systems work correctly.

These trust considerations can be transferred to software en-
gineering as well. Classical software development means relying
on the correctness or trustworthiness of the software host, the
software itself, the hardware used to serve it, the developer or the
software testing and quality assurance team. Blockchain technol-
ogy proposed a shift in this trust relationship: Instead of trusting
an abstract system (i.e., a server running the software) the users
trust a protocol that encourages honest user behavior. The Bitcoin
whitepaper explicitly states that blockchains propose a system that
does not rely on trust and thus being trustless [5]. The fact that the
resilience of a blockchain network is based on transparency and
that every node is required to validate each transaction reduces the
required trust both into other users and systems (cf. [1]).

Building Construction
Owner Supervisor

e‘ e

Contractor Contractor Contractor
Figure 2: Identify trust relations of participants

When considering trust relations in this second step it can be
useful to think about general trust classes the participants can be
assigned to. For example the classes can range from the lowest trust
in "unknown persons or companies”, medium trust for "known
partners with business relations in the past”, higher trust for own
"subsidiaries and holdings" and highest trust for the "own company".
Generally these distinctions are not precise but usually sufficient
for a first evaluation.

In our simplified example, several trust relations between par-
ticipants identified in the previous step are illustrated in Figure 2.
We assume a mutual and high trust relation between the building
owner "B" and construction supervisor "S" as they work closely
together while "B" delegates the coordination of contractors to "S".
The contractors trust the construction supervisor as their contact
person to assign tasks.

(3) Identify Interactions

As the third step any interactions between the participants have
to be identified. An interaction can be seen as any exchange of



Towards a Concept for Building Hybrid DApp Architectures

data using the planned application. This can be a function call that
adds, removes or modifies data in any of the peripheral systems.
These interactions can occur between users, systems or a mix of
both. It is part of our ongoing research to decide if types of inter-
action, e.g. reading or writing data, need to be differentiated for
further decisions in our approach. For example it could be useful
to allow reading operations but restrict writing operations only to
participants considered trustworthy in the previous step.

Figure 3 shows an example of the main interaction relations
between participants identified in the first step. Contractors report
to the construction supervisor that the assigned tasks have been
carried out. The construction supervisor frequently sends updates
about the current state of the construction site and overall project
progress to the building owner. The interactions between the build-
ing owner and the contractors result from the legal responsibility
for the construction site and obligation to pay the contractors.

Building Construction
Owner Supervisor

0= (s

Contractor Contractor Contractor

Figure 3: Identify interactions between participants

(4) Derive an Architectural Draft

In this last step the results gathered in steps 1-3 are combined to
derive a first architectural draft. This task supports the identifica-
tion of specific areas where blockchain technology can benefit the
system architecture. For a given use case it needs to be considered
which value the blockchain should secure and be able to transport
(e.g. representation and transfer of ownership, documentation of
process execution or execution of payments). This also influences
the scope of the blockchain, i.e., the participants that will read data
from or write data to the blockchain.

Area A
Building Construction Area B
Owner Supervisor

e A

Jo/ o o

Contractor Contractor Contractor

£

Figure 4: Emerging areas of the trust and interaction overlay
as a first hint towards an architectural draft

Figure 4 shows the overlay of trust relations (in black) and in-
teractions (in grey) from our example. Two areas emerge: Area A
covers the mutual trust and interaction relation between the build-
ing owner and the construction supervisor. As all participants trust
each other and can freely interact, it does not make sense to employ
blockchain technology. Here the identified trust and interaction
relations suggest the use of a centralized software system as the
easiest and most cost-effective solution. Area B covers the trust and
interaction between the construction supervisor and the contrac-
tors. This area is different from area A as only a small subset of
the participants trust each other with the construction supervisor
as a central actor. What is not covered, is the interaction between
the building owner and the contractors. Their trust relation exists
only transitively through the construction supervisor but the owner
is responsible for paying the contractors (as "B" legally entered a
contract with "X", "Y" and "Z" that was arranged by "S").

At the intersection between area A and B the construction su-
pervisor "S" serves as a connector between those two areas of trust
and interaction. There are two solutions that can be considered to
enable the interaction between the building owner and the con-
tractors: (a) All participants trust the construction supervisor that
therefore can serve as a "trusted third-party” and coordinate all
interactions. (b) Use blockchain technology to connect the build-
ing owner directly to the contractors for payment purposes and
getting automatically informed about the project’s progress. In the
latter case using blockchain technology can be justified as it enables
trustless interaction between participants without the need of a
centralized system or trusted third-party. Instead of replacing the
construction supervisor with blockchain technology this solution
reduces the power and trust that is necessary towards this partici-
pant. The supervisor can still be responsible for setting up the legal
contracts, hire contractors on behalf of the building owner and con-
figure the blockchain infrastructure. This covers the configuration
and deployment of the Executable Distributed Code Contracts on
the blockchain (<EDCCs: a more precise term for Smart Contracts').
These code contracts support a more decentralized project man-
agement by allowing the supervisor to assign tasks, contractors to
confirm finished tasks, enable automatic and tamper-proof progress
documentation and execute payments automatically.

All insights from this step give a first hint towards an architec-
tural draft for the system in our example. Based on the trust and
interaction relations the use of blockchain technology seems useful
in a certain area of our system, specifically for documentation and
payment purposes.

3 CONCLUSION

The need for building blockchain-based applications as well as
adding blockchain technology to existing software systems is in-
creasing. Nonetheless, for creating these systems a holistic engi-
neering approach is currently missing. It needs to be examined
whether existing methods for software engineering are applicable
for blockchain-oriented software engineering [8], if adjustments are
necessary or completely new methods and processes are required.

!¢f. https://www.ethnews.com/edcc



As a first step towards a blockchain-oriented software engineer-
ing approach we motivated in this paper the need for a more fine-
grained approach when deciding whether blockchain technology is
useful for a given use case or not. We presented the first outline of a
concept that can be used to derive a high-level hybrid architecture
of a blockchain-based application by identifying participants, their
trust relations and interactions.

4 FUTURE WORK

In this section we will explain the focus of our future research,
peripheral ideas and how the architectural approach outlined in
this paper can be extended on an implementation and code level.

The approach as presented in section 2 is currently under devel-
opment. Therefore several open questions remain and are subject
of future work. In contrast to the given example we will test our
approach in a situation where blockchain technology should be
added to an existing system, instead of being built from scratch. We
also want to examine the potential target audience of our approach.
Maybe developers perceive the trust relations of the participants
differently from project managers.

Architectural Patterns

The simplified example from section 2 showed a transitive trust
relation between the building owner, construction supervisor and
contractors. Although there is no direct trust relation between
the building owner and contractors, both need to interact with
each other. After identifying the trust relations and interactions we
explained why the use of blockchain technology makes sense in
this case and can solve this issue.

We assume that challenges like this will come up regularly where
patterns in specific situations can be identified (e.g. using trust
relations and interactions as a hint). Therefore we assume that
multiple patterns for architectures of blockchain-based applications
will emerge. Some authors have similar ideas, e.g. Xu et al. mention
"design patterns for applications based on blockchain" as part of
their future work [12]. These architectural patterns will support
developers when deciding which elements of their architectures
will benefit from using blockchain technology and how existing
systems can be combined to benefit from both approaches.

Design Patterns for EDCCs

The high-level hybrid architectural draft is a first step towards a sys-
tem using blockchain technology. As the next step the lower-level,
i.e., the implementation and code level, has to be considered. In
blockchain-based systems the business logic is usually implemented
as a set of Executable Distributed Code Contracts (EDCCs or Smart
Contracts). Similar to the discussion whether methods from known
software engineering processes need to be adapted for building
blockchain-based applications, the question also arises on a code
level. Design patterns are a common instrument to solve reoccur-
ring problems (cf. the "Gang of Four" patterns [3]). For our ongoing
research we examine these design patterns, consider whether they
are applicable for EDCCs and measure their impact on transaction
costs.

F. Wessling et al.

ACKNOWLEDGMENTS

The European Union supported this work through the project
CPS.HUB NRW, EFRE No. 0-4000-17.

REFERENCES

[1] Andreas M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies (1st ed.). O’'Reilly Media, Inc.

[2] Hans-Werner Bierhoff and Bernd Vornefeld. 2004. The social psychology of trust
with applications in the internet. Analyse & Kritik 26, 1 (2004), 48-62.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc.

[4] N.Luhmann. 2017. Trust and Power. John Wiley & Sons.

[5] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[6] M. E. Peck. 2017. Blockchain world - Do you need a blockchain? This chart
will tell you if the technology can solve your problem. 54, 10 (2017), 38-60.
https://doi.org/10.1109/MSPEC.2017.8048838

[7] Klaus Pohl. 2010. Requirements Engineering: Fundamentals, Principles, and Tech-
niques (1st ed.). Springer Publishing Company, Incorporated.

[8] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli. 2017. Blockchain-Oriented
Software Engineering: Challenges and New Directions. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 169-171.
https://doi.org/10.1109/ICSE-C.2017.142

[9] Victoria Stavridou. 1999. Integration in software intensive systems. Journal of

Systems and Software 48, 2 (1999), 91-104. https://doi.org/10.1016/S0164-1212(99)

00049-7

Melanie Swan. 2015. Blockchain: Blueprint for a New Economy.

Karl Wiist and Arthur Gervais. 2017. Do you need a Blockchain? (2017). https:

//eprint.iacr.org/2017/375

[12] X.Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba.

2017. A Taxonomy of Blockchain-Based Systems for Architecture Design. In
2017 IEEE International Conference on Software Architecture (ICSA). 243-252.
https://doi.org/10.1109/ICSA.2017.33

—
- o





