
How Much Blockchain Do You Need?
Towards a Concept for Building Hybrid DApp Architectures

Florian Wessling, Christopher Ehmke, Marc Hesenius, Volker Gruhn
paluno, University of Duisburg-Essen

Essen, Germany
�rstname.lastname@paluno.uni-due.de

ABSTRACT
Adding blockchain technology to existing systems instead of build-
ing them from the ground up poses several challenges. It is di�cult
to �nd out which attributes of blockchains are important for a
given use case (e.g. immutable, trustless, anonymous) and to de-
cide which elements of an architecture should employ blockchain
technologies. Current approaches generally only give a hint on
whether blockchain technology makes sense for a given use case
or not. This paper proposes a more �ne-grained approach to decide
which elements of an application architecture could bene�t from
the use of blockchain technology. We illustrate the �rst outline of
our approach which identi�es participants, their trust relations and
interactions to derive a hybrid architecture (i.e., an architecture
embedding blockchain technology in existing software systems or
creating new systems using blockchain only in certain parts).

KEYWORDS
blockchain, architecture, Executable Distributed Code Contracts,
EDCC, smart contract, decentralized application, DApp, design
pattern, architecture pattern, blockchain-oriented software engi-
neering, hybrid architectures

1 INTRODUCTION
Blockchain technologies bring certain properties to create a decen-
tralized, trustless, transparent and tamper-proof environment for
building applications [10]. Those advantages come at the cost of

additional technical complexity. When building blockchain-based
applications (so-called DApps: decentralized applications) the goal
is to bene�t from the advantages and being able to handle the
imposed technical challenges of blockchains (cf. [8]).

Current approaches focus on the question whether a blockchain
is necessary for a given use case or not. Peck di�erentiates be-
tween three types of blockchain, that might be needed for an
use case: "no blockchain", "permissioned blockchain" or "public
blockchain" [6]. Wuest and Gervais add a fourth variant and distin-
guish between public and private permissioned blockchains [11].
This option is based on the question whether public veri�ability is
required. Xu et al. [12] argue that blockchain technology has many
con�gurations and variants. To support the creation of blockchain-
based systems the authors propose a design process for selecting
and con�guring the most suitable blockchain implementation. The
main contribution of their work is a taxonomy of blockchain prop-
erties and a �owchart. Those elements serve as a guidance and
initial questionnaire when designing a blockchain-based system by
re�ecting on aspects like authority, storage and decentralization.
The result is very speci�c as it refers to the con�guration of a single
blockchain system with respect to technical details such as block
creation time, block size, consensus algorithm, etc.

In this paper we focus on the architectural design for blockchain-
oriented applications and propose an approach to decide which
elements of an application architecture could bene�t from the use of
blockchain technology. We illustrate the �rst outline of our idea to
derive a hybrid architectural draft by identifying participants, their
trust relations and interactions. In contrast to the aforementioned
approaches we propose a more �ne-grained process. Instead of giv-
ing only a few general choices when deciding whether a blockchain
is useful for a use case or not, we want to go into more detail and
support developers in deciding which speci�c elements or areas of
an architecture can bene�t from the use of blockchain technology.
This is especially relevant when applications are not built or rewrit-
ten from the ground up based on blockchain technology ("big-bang
integration" [9]) but rather are extended with blockchain aspects
for certain subsystems ("gradual integration" [9]). Those systems
represent a hybrid architecture featuring elements both with and
without blockchain technology (e.g. from existing software sys-
tems). This allows to bene�t from blockchain properties in certain
parts of an application and to decide which blockchain type and
con�guration �ts best.

The paper is structured as follows: Section 2 explains our ap-
proach and its four steps in detail. In section 3 we conclude the
paper and summarize our �ndings. Our ongoing research is out-
lined in section 4 as well as an outlook on our future work regarding
architectural patterns and design patterns for code contracts.







F. Wessling et al.

As a �rst step towards a blockchain-oriented software engineer-
ing approach we motivated in this paper the need for a more �ne-
grained approach when deciding whether blockchain technology is
useful for a given use case or not. We presented the �rst outline of a
concept that can be used to derive a high-level hybrid architecture
of a blockchain-based application by identifying participants, their
trust relations and interactions.

4 FUTURE WORK
In this section we will explain the focus of our future research,
peripheral ideas and how the architectural approach outlined in
this paper can be extended on an implementation and code level.

The approach as presented in section 2 is currently under devel-
opment. Therefore several open questions remain and are subject
of future work. In contrast to the given example we will test our
approach in a situation where blockchain technology should be
added to an existing system, instead of being built from scratch. We
also want to examine the potential target audience of our approach.
Maybe developers perceive the trust relations of the participants
di�erently from project managers.

Architectural Patterns
The simpli�ed example from section 2 showed a transitive trust
relation between the building owner, construction supervisor and
contractors. Although there is no direct trust relation between
the building owner and contractors, both need to interact with
each other. After identifying the trust relations and interactions we
explained why the use of blockchain technology makes sense in
this case and can solve this issue.

We assume that challenges like this will come up regularly where
patterns in speci�c situations can be identi�ed (e.g. using trust
relations and interactions as a hint). Therefore we assume that
multiple patterns for architectures of blockchain-based applications
will emerge. Some authors have similar ideas, e.g. Xu et al. mention
"design patterns for applications based on blockchain" as part of
their future work [12]. These architectural patterns will support
developers when deciding which elements of their architectures
will bene�t from using blockchain technology and how existing
systems can be combined to bene�t from both approaches.

Design Patterns for EDCCs
The high-level hybrid architectural draft is a �rst step towards a sys-
tem using blockchain technology. As the next step the lower-level,
i.e., the implementation and code level, has to be considered. In
blockchain-based systems the business logic is usually implemented
as a set of Executable Distributed Code Contracts (EDCCs or Smart
Contracts). Similar to the discussion whether methods from known
software engineering processes need to be adapted for building
blockchain-based applications, the question also arises on a code
level. Design patterns are a common instrument to solve reoccur-
ring problems (cf. the "Gang of Four" patterns [3]). For our ongoing
research we examine these design patterns, consider whether they
are applicable for EDCCs and measure their impact on transaction
costs.

ACKNOWLEDGMENTS
The European Union supported this work through the project
CPS.HUB NRW, EFRE No. 0-4000-17.

REFERENCES
[1] Andreas M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Crypto-

Currencies (1st ed.). O’Reilly Media, Inc.
[2] Hans-Werner Bierho� and Bernd Vornefeld. 2004. The social psychology of trust

with applications in the internet. Analyse & Kritik 26, 1 (2004), 48–62.
[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design

Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc.

[4] N. Luhmann. 2017. Trust and Power. John Wiley & Sons.
[5] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[6] M. E. Peck. 2017. Blockchain world - Do you need a blockchain? This chart

will tell you if the technology can solve your problem. 54, 10 (2017), 38–60.
https://doi.org/10.1109/MSPEC.2017.8048838

[7] Klaus Pohl. 2010. Requirements Engineering: Fundamentals, Principles, and Tech-
niques (1st ed.). Springer Publishing Company, Incorporated.

[8] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli. 2017. Blockchain-Oriented
Software Engineering: Challenges and New Directions. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 169–171.
https://doi.org/10.1109/ICSE-C.2017.142

[9] Victoria Stavridou. 1999. Integration in software intensive systems. Journal of
Systems and Software 48, 2 (1999), 91–104. https://doi.org/10.1016/S0164-1212(99)
00049-7

[10] Melanie Swan. 2015. Blockchain: Blueprint for a New Economy.
[11] Karl Wüst and Arthur Gervais. 2017. Do you need a Blockchain? (2017). https:

//eprint.iacr.org/2017/375
[12] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba.

2017. A Taxonomy of Blockchain-Based Systems for Architecture Design. In
2017 IEEE International Conference on Software Architecture (ICSA). 243–252.
https://doi.org/10.1109/ICSA.2017.33




